APPENDIX H
 WETLAND VERIFICATION REPORT

Page
Wetland Verification Report, 09/14/17 ..1-190

Kivalina Evacuation and School Site Access Road

Wetland Verification Report

Prepared for: State of Ala ska Department of Transportation \& Public Facilities Northem Region 2301 Peger Road
Fa irbanks, Ala ska 99709
Prepared by:
Stantec Consulting Services, Inc. 725 E Fireweed Lane, Suite 200
Anchorage, AK 995003

Appendix H Page 2

Table of Contents

EXECUIIVE SUMMARY
ABBREVIATIONS II
1.0 INTRODUCTION 1.1
1.1 PROJ ECTDESC RIPTION 1.1
1.2 SITE LOCATION 1.1
2.0 BACKGROUND INFORMATION. 2.1
2.1 EXISTING WEILAND INFORMATION 2.1
2.2 EXISTING VEGETATION INFORMATION 2.2
2.3 EXISTING SOILS INFO RMATION 2.2
2.4 EXISTING HYDROLOGY INFORMATION 2.3
3.0 MEIHODOLOGY 3.1
3.1 WERLAND VERIFICAITON 3.1
3.2 FUNCTIONAL ASSESSMENT 3.2
4.0 RESULTS AND DISC USSION 4.1
4.1 WERLANDS AND WATERS. 4.1
4.2 COWARDIN CLASSIFICATIONS 4.1
4.2.1 \quad Palustrine Saturated \& Seasonally Flooded 4.2
4.2.2 Palustrine Flooded 4.3
4.2.3 Soils Disc ussion. 4.4
4.2.4 Marine and Estuarine 4.4
4.2.5 Riverine 4.5
4.2.6 Lacustrine and Ponds. 4.5
4.2.7 Uplands 4.6
4.3 WILDUFE (VIERECK) HABITAT. 4.6
4.3.1 II.C. 1 (Closed Low Scrub) 4.6
4.3.2 II.D. 2 (Willow Dwarf Shrub) 4.7
4.3.3 III.A. 2 (Mesic Graminoid Herbaceous) 4.7
4.3.4 III.A. 3 (Wet Graminoid Herbaceous) 4.7
4.3.5 W (Water) 4.7
4.4 FUNCTIONALASSESSMENT. 4.7
4.4.1 Category I+ 4.8
4.4.2 Category 4.9
4.4.3 Category II. 4.9
4.4.4 Bird Habitat 4.9
4.5 CONCLUSION AND JURISDICTION 4.9
5.0 REFERENCES 5.1

USTOF APPENDICES

APPENDIX A SIIE MAPS. A. 1
APPENDIX B STANDARD WEILAND DELNEATION DATA SHEEIS. B. 1
APPENDIX C PHOTO POINIS C. 1

Executive Summary

The Alaska Department of Transportation and Public Facilities (DOT\&PF) a nd the Federal Highway Administration (FHWA), in partnership with the Northwest Arctic Borough (NAB), Native Village of Kivalina, and the City of Kivalina, propose community safety improvements in Kivalina, Alaska by constructing an evacuation road between Kivalina Island and a site on Kisimig iuqtuq Hill (K-Hill) where a school planned for construction by the NAB would also serve as a safe emergency evacuee assembly site.

A desktop Wetland Delineation and Functions \& Values Assessment was conducted by Arctic Slope Regional Corporation (ASRC) Energy Servic es in 2015 (ASRC 2015). This report updates that desktop delineation and functional assessment with ground observations and other information gathered during the following efforts:

- March/April 2015 G older Assoc iates geotechnic al investigations (Golder Assoc iates 2015)
- September 2016 Stantec site reconna issance (Sta ntec 2016)
- October 2016 Stantec cultural resources investigation (Stantec 2017)
- August 2017 USACE wetla nd determination (USACE 2017)
- August 2017 Stantec site reconna issance (this report)
- 2011 aerial imagery, updated UDAR (Light Detection and Ranging)
- Agency coordination

The Study Area is a large wetland complex with a variety of emergent, dwarf, a nd low shrub habitat. Rivers, lakes, and ponds are common defining characteristics. Most of the subsurface data gathered found at least shallow soil saturation, and many field observations desc ribed seasonal orpermanently flooded regimes.

There are a limited number of uplands scattered throughout the Study Area. K-Hill dominates the eastem end of the Study Area, and provides elevated upland topography with wetlands surrounding its base.

Vegetation consists of low and dwarf shrub, and wet and mesic herbaceous polygons. These provide a variety of wild life habitat. Most importantly, in consultation with the US Fish and Wild life Service (USFWS), low scrub habitat was identified as important bird nesting habitat.

Wetlands in the Study Area are high functioning and common. They are largely undisturbed, and operating in their natural state. Rivers, lakes, ponds, estua ries, ocean, a nd bird nesting habitat was inc reased to the highest functional value to aid project planners in avoiding these important features.

All wetlands and Waters of the United States were detemined to be hydrologic ally connected to the Kivalina River, Wulik River, or Kivalina Lagoon, which are connected to the Chukchi Sea, a traditional navigable Water of the U.S. For this reason, wetlands and Waters of the U.S. in the Study Area are presumed jurisdictional by the USACE under Section 404 of the CWA and Section III.D. 2 of the J urisdic tional Determination Form.

Abbreviations

ANSRAM	Arctic North Slope Rapid Assessment Method
ASRC	Arctic Slope Regional Corporation
AVC	Alaska Vegetation Classific ation
cm	centimeter
DOT\&PF	Department of Transportation and Public Facilities
ElUB	Estua rine, Subtidal, Unc onsolidated Bottom
E2US	Estua rine, Intertidal, Unc onsolidated Shore
FHWA	Federal Highway Administration
GPS	Global Positioning System
K-Hill	Kisimigiuqtuq Hill
LIUB	Lac ustrine, Limnetic, Unc onsolidated Bottom
LiDAR	Light Detection and Ranging
m	meter
M1UB	Ma rine, Subtidal, Unconsolidated Bottom
M2US	Marine, Intertidal, Unconsolidated Shore
NA	Not Applicable
NAB	Northwest Arctic Borough
NWI	National Wetlands Inventory
OFS	Overall Functional Score
PEM1/SS1B	Palustrine Persistent Emergent/ Broad-Leaved Deciduous Scrub Shrub, Saturated
PEM1/SS1C	Pa lustrine Persistent Emergent/ Broad-Lea ved Deciduous Scrub Shrub, Sea sonally Flooded
PEM1/SS1F	Palustrine Persistent Emergent/Broad-Leaved Deciduous Scrub Shrub, Semipermanently Flooded
PEM1C	Pa lustrine Persistent Emergent, Seasona lly Flooded
PEM1F	Pa lustrine Persistent Emergent, Semi-perma nently Flooded
PSS1/EM1B	Palustrine Broad-Leaved Deciduous Scrub Shrub/ Persistent Emergent, Saturated
PSS1/EM1C	Palustrine Broad-Leaved Deciduous Scrub Shrub/ Persistent Emergent, Sea sonally Flooded
PSS1/EM1E	Palustrine Broad-Lea ved Deciduous Scrub Shrub/ Persistent Emergent, Sea sona lly Flooded/Saturated
PSSIC	Palustrine Broad-Leaved Deciduous Scrub Shrub, Seasonally Flooded
PSSIJ	Palustrine Broad-Leaved Deciduous Scrub Shrub, Intermittently Flooded
PUBH	Palustrine, Unconsolidated Bottom, Permanently Flooded
R2UB	Riverine, Lower Perennial, Unconsolidated Bottom
R2US	Riverine, Lower Perennial, Unconsolidated Shore
R3UB	Riverine, Upper Perennial, Unconsolidated Bottom
USACE	US Army Corps of Engineers
USFWS	US Fish and Wild life Service

USGS US Geological Survey
Water

Appendix H Page 8

1.0 INTRODUCTION

1.1 PROJ ECTDESCRIPION

The Alaska Department of Transportation and Public Facilities (DOT\&PF) a nd the Federal Highway Administration (FHWA), in partnership with the Northwest Arctic Borough (NAB), Native Village of Kivalina, and the City of Kivalina, propose community safety improvements in Kivalina, Alaska, by constructing an evacuation road between Kivalina Island and a site on Kisimigiuqtuq Hill (K-Hill) where a school planned for construction by the NAB would also serve asa safe emergency evacuee assembly site. Figure 1 (AppendixA) displaysthe location and vicinity of the proposed project.

1.2 SIE LOCATION

The proposed project origin is at the City of Kivalina, located on the southeast tip of the ba mier island located between the Chukchi Sea (Arctic Ocean) and Kivalina Lagoon (Figure 1). The project terminus is located on the mainland across the Kivalina La goon approximately six -miles northeast at a community selected evacuation site on Kisimigiuqtuq Hill (K-Hill). The Study Area encompasses the Kivalina barier isla nd, the southem portion of Kivalina Lagoon, and the lower Wulik and Kivalina Riverdrainages.

2.0 BACKGROUND INFORMATION

A proposed inland access route in the Kivalina region has been the subject forstudy for many years. This wetla nd verification report is the compilation of at least three years of effort evaluating wetlands for the access altematives. The intent of this report is to integrate the previous desktop and field efforts to provide one comprehensive wetlands resource.

A desktop only wetland delineation was conducted in 2015 (ASRC 2015) for a smaller Study Area, commissioned by the Northwest Arctic Borough (NAB). Subsequently, at least four field efforts (March/April 2015 [Golder Associates 2015], September 2016 [Stantec 2016], October 2016 [Stantec 2017], August 2017 [USACE 2017 and this report]) were conducted and provide on the ground verification for the initial desktop delineation.

This report updates and expandsthe ASRC (2015) desktop effort by compiling the field efforts, and generating USACE Wetland Data sheets a nd photo points. These points document the vegetation, soil, and hydrology characteristics of the area. This report also provides an updated functional assessment using the same method (updated with field data) as the previousdesktop a ssessment. By compiling the previous efforts, this wetla nd verific ation report provides the best a vailable information on wetlands in the Study Area.

2.1 EXISTING WEILAND INFORMATION

A desktop Wetland Delineation and Functions \& Values Assessment wasconducted in 2015 by ASRC Energy Services (ASRC 2015). ASRC conducted aerial photography interpretation, using information from:

- National Wetlands Inventory (NWI);
- U.S. Geological Survey (USG S) topographic maps;
- Kivalina Evacuation and School Access Road Reconna issance Study (WHPa cific 2014);
- Kivalina Evacuation Road Preliminary Environmental Report (WHPacific 2012a); and
- Kivalina Evacuation Route Significant Biotic Resources Baseline Report and Preliminary, Essential Fish Habitat Ana lysis (WHPac ific 2012b).

ASRC produced wetland pdf maps with polygons classified by the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al. 1979). ASRC also conducted a desktop Functionsand Values Assessment using a method they developed, ANSRAM (Arctic North Slope Rapid Assessment Method).

The ASRC wetland report found that the area wascomposed almost exclusively of high quality wetlands, and that little to no disturbance has taken place on the mainland. The wetlands were of such uniformly high quality, that certa in features (e.g. waters and rivers) were elevated from a Category I to a Category I+. This allowed project planners to a void features of inherent elevated importance when planning features across the landscape.

The lack of field data to support this desktop effort was addressed by at least four field efforts (March/April 2015 [Golder Associates 2015], September 2016 [Sta ntec 2016], October 2016 [Stantec 2017], August 2017 [USACE 2017 and this report]).

2.2 EXISTING VEGEIATION INFORMATION

The Study Area has Nationa I Wetla nd Inventory Cowardin classific ation mapping available, which was used as a guide in classific ations. The previous desktop Wetland Delineation effort also used the Alaska Vegetation Classific ation (AVC) System (Viereck 1992) to Level III. The Viereck classific ation system is an Ala skan spec ific ha bitat classific ation system, partic ula rly useful for evaluating wild life habitat. It is subtly different than Cowardin, and provides a greater level of detail in ha bitat c lassific ations (e.g. tall, short, dwarf shrubs).

The Stantec site reconnaissance field efforts included vegetation photographs. This involved taking GPS-linked site photographs, a nd brief notes on wetlands, hydrology, a nd plant cover. These photographs provide key vegetation cover information for this wetland report. The photographs and notesallow vegetation to be classified on the Cowardin and Viereck systems. Species composition and percent cover can also be assigned from this effort, allowing the completion of USACE Wetla nd Datasheets.

2.3 EXISTING SOILS INFORMATION

The USDA Soil Survey does not have information available for the Study Area and no such information has been reported on in previous wetland reports.

We developed key soil information from multiple sources. The first soil field effort occurred in March and April of 2015. Golder Associates conducted spring geotechnical investigations primarily a round gravel source exploration in the Study Area (Golder Associates 2015). The profiles provide evidence of deep organics and high levels of water content in the soils. This supports both wetla nd soil and hydrology characteristics.

Sec ond, in October 2016 and August 2017, Stantec and the USACE conducted a cultural and wetland field efforts (Stantec 2016, 2017, USACE 2017). These efforts conducted site testing at multiple sites, providing logs of soil profiles. These soil profiles do not have Munsell color notations (Munsell 2010), but do provide valuable soil information (e.g. organic depths, colors, texture, saturation) about the organic layers in the Study Area.

Cultural resource investigations typic ally focus on rises, ridges, a nd uplands; which are common historic gathering places. Areas of standing water and similar polygonal tundra are not high probability landforms to find cultural materials within the region. As a result, soil profiles availa ble from these efforts are most likely upland sites. This undersc ores their importance, as the relatively rare upland sites the wetland delineation is seeking are the most likely to have soil information a vailable.

2.4 EXISTING HYDROLOGY INFORMATION

Hydrology information in the ASRC report was limited and interpreted solely from aerial photography and online databases. The subsequent field efforts provided important additional hydrology insights needed to map wetlandsmore accurately.

Site photographs and notes from the Stantec and USACE field efforts made evident that most of the Study Area is seasonally or pemanently flooded, and provided evidence of subtle, but critical, hydrologic al differences (e.g. saturation, sea sonally flooded, standing water). This information allowed aerial signatures to be groundtruthed, partic ularly on flooded low centered polygon complexes which are surrounded by sea sonally flooded wetlands.

The Golder Geotechnical field effort (Golder Associates 2015) also had valuable hydrology notations collected during soil profiling (e.g. saturation, ice wedges). These notations allowed the USACE Standard Forms to be completed. Often a shallow water table was not specific ally noted (this information is not typic ally collected during cultural and geotec hnic al investigations), and had to be assumed.

This report also uses new Light Detection and Ranging (LDAR) and aerial imagery to understand the important topography and hydrology changes. These allow the tracing of topographic features that were not evident in the ASRC report.

Appendix H Page 14

3.0 MEIHODOLOGY

The wetland verification efforts compiled data from the ASRC wetland report (ASRC 2015); and field datasets: March/April 2015 [Golder Associates 2015], September 2016 [Stantec 2016], October 2016 [Stantec 2017], August 2017 [USACE 2017 and this report]. The data analysis was conducted and report written by Professional Wetland Scientists to provide a comprehensive ground truthed analysis of wetlands in the Study Area.

Methodology for this wetland verification do not follow the transect methodsoutlined in the Corps of Engineers Wetlands Delineation Manual (USACE, 1987) and the Regional Supplement to the Corps of Engineers Wetla nd Delineation Manual: Alaska Region (Version 2.0) (USACE, 2007). Instead, this venific ation uses the general guidance of the regional supplement to provide a best available information compilation of knowledge of the Study Area.

Mapping in the Study Area is divided into two categories. National Wetlands mapping boundaries was used for the entire Study Area, and classific ations were updated with results from the field efforts. Inside the core Study Area (the region studied by the NAB), mapping boundaries and classific ation was updated in fine scale resolution. This method allowed broad scale altemative evaluation on the entire Study Area, and fine scale mapping for proposed impacts.

3.1 WEILAND VERIRCATION

Digitizing Existing ASRC Data: The wetland shapefiles from the ASRC report were not a vailable. but the pdfs in the ASRC wetland map had location information electronic ally embedded in them, allowing the creation of a mosaic of geoTiffs. These were brought into ArcGIS, and wetland polygons were digitized and attributed at 1:3,000 scale. While digitizing the maps, wetland boundaries and Cowardin classifications were updated for polygons as needed, using more recent and high resolution aerial imagery. In addition, field data (photos and soil profiles) were reviewed to further venify wetla nd boundaries and classific ations where available.

Data Compilation: Standard USACE Wetland Detemination Data Forms were completed at all loc ations where sufficient vegetation, soils, and hydrology information could be extrapolated from ground observations. Data forms were completed at 11 locations within the Study Area and are included in Appendix B. Each data form fully documents which field effort the vegetation, soils, and hydrology data came from.

Photo points (Appendix C) allow best professional judgment to a pply wetland designations to specific habitats and were completed where vegetation, soils, and hydrology data were partially a vailable, but did not give enough detail to complete full detemination forms. Photo points are intended to provide ground observations to confirm desktop mapping for wetland indic ators such as saturation, restrictive layers, and hydrophytic vegetation. Each standard and photo point location sampled during the field investigation wascollected in a handheld global
positioning system (GPS) unit. Photo point forms were completed at 37 locations within the Study Area.

Wetland delineation data form and photo point locations are shown on maps included in AppendixA.

3.2 FUNCTIONALASSESSMENT

The ASRC (2015) methodology used a rapid desktop functional assessment (ANSRAM). The methodology and previous datasheets are included in the previous wetland report (ASRC 2015). The ASRC report found that almost all wetlands were Category I, with a few Category II saturated wetlands. For that report, under best professional judgement; all riverine, tidal, estuarine, and lac ustrine water bodies, as well as flooded palustrine wetlands were elevated to Category It. This was done to aid project planners in avoiding important wetlands.

For this report's a nalysis, we had additional consultation with agencies to detemine the functional rankings. Similar to the ASRC report; all ponds, riverine, tidal, estuarine, a nd lacustrine water bodies were elevated to the Category It. All saturated wetlands (PSS1/EM1B) were ranked as a Category II, also similar to ASRC.

For this project, the USFWS has indic ated that high quality shrub a reas are important migratory bird habitat. This habitat wasmapped and identified in this report as Closed Low Scrub habitat (II.C.I). This 'low scrub' habitat is the highest vegetation habitat in the region (taller than 'dwarf shrub'). To accommodate this important function, all C losed Low Scrub habitat (II.C.I) was promoted one functional level. PSS1/EM1B wetlands that were bird habitat were upgraded to Category I, the rest of bird habitat was elevated to Category I+. The primary difference between the ASRC (2015) report and this method, was that we did not find all flooded palustrine wetla nds to be I+. This value wasoverstated, when compared to the bird habitat.

4.0 RESULTS AND DISC USSION

4.1 WEILANDS AND WATERS

Table 1 below summarizes the standard and photo data points.

Table 1: Summary of Standard and Photo Data Points

Type	Point
Standard (Appendix B)	HP40, P7, P12, P14, P16, P20, P27, P32, P37, P45, P56
	HP1, HP4, HP11, HP15, HP19, HP21, HP22, HP24, HP36, HP37, HP38, HP39, Photo (Appendix C)
	JAJ-17-009, JRH-17-12, P1, P2, P3, P4,
	P22, P24, P25, P30, P34B, P35, P36,
P41A, P41B, P42, P48, P50, P54, P58,	
P59, USACE1, USAC E2, USACE3, WCP1	

The majority of habitat within the Study Area is comprised of wetlands (74\%) or waters (23\%) within the Wulik and Kivalina Riverdrainages (Figure 2). K-Hill, an isolated hill in the northeastem section of the Study Area, is upland. Other uplands are scattered throughout the Study Area, including pingos, relic riverbanks, and large ice wedgesthat have been elevated above the surrounding topography.

In general, vegetation and hydrology determined key wetland characteristics. The Study Area is a mostly a pristine ecosystem (99.9% undeveloped lands) with a variety of emergent, dwarf, and low shrub habitats. Rivers, lakes, and ponds are common throughout the Study Area and are defining characteristics of the general landscape. The test pits found shallow saturation, and observations desc ribed saturated, sea sonal, or permanently flooded regimes. It is important to note that field data were mostly collected in September and October.

4.2 COWARDIN CLASSIFCATIONS

Table 2 summa nizes the different wetlands, Waters of the U.S., a nd upland ha bitat types found within the Study Area.

Table 2: Summary of Wetlands, Waters of the U.S., and Uplands

Habitat Type	Cowardin	Acres	\% Study Area
WetlandsPalustrine Saturated Seasonally Flooded	PEM1C	580.9	1.6\%
	PEM1/SS1B	296.2	0.7\%
	PEM 1/SS1C	13,559.8	36.7\%
	PSS1/EM1B	6,023.8	16.3\%
	PSSI/EM1C	2,042.0	5.5\%
	PSS1C	1,391.3	3.8\%
	PEM1F	1,296.6	3.5\%
	PEM 1/SS1F	581.0	1.6\%
	PSS1/EM1E	1,430.6	3.9\%
	PSSIJ	231.9	0.6\%
Total Wetlands		27434.1	74.2\%
Waters of the U.S.			
Estuarine	E1UB	3,686.9	10.0\%
	E2US	135.1	0.4\%
Lac ustrine	L1UB	1,164.3	3.2\%
Marine	M1UB	109.1	0.3\%
	M2US	73.7	0.2\%
Pond	PUBH	949.5	2.6\%
Riverine	R2UB	1,378.4	3.7\%
	R2US	737.8	2.0\%
	R3UB	176.0	0.5\%
Total Waters of the US		8,410.8	22.9\%
Uplands	Upland	1071.5	2.9\%
Total Study Area		36,916.4	100.0\%

4.2.1 Palustrine Saturated \& Seasonally Fooded

Palustrine Saturated \& Seasonally Flooded a reasconsisted of saturated and seasonally flooded wetlands. Cowardin classification within this type include:

- PEM1C: Pa lustrine Persistent Emergent, Sea sona lly Flooded
- PEM1/SS1B: Palustrine Persistent Emergent/ Broad-Leaved Deciduous Scrub Shrub, Saturated
- PEM 1/SS1C: Palustrine Persistent Emergent/ Broad-Lea ved Dec iduous Sc rub Shrub, Sea sona lly Flooded
- PSS1/EM1B: Palustrine Broad-Lea ved Deciduous Scrub Shrub/ Persistent Emergent, Saturated
- PSS1/EM1C: Palustrine Broad-Leaved Deciduous Scrub Shrub/ Persistent Emergent, Seasonally Flooded
- PSS1C: Palustrine Broad-Lea ved Deciduous Scrub Shrub, Sea sonally Flooded

Vegetation in saturated wetlands include both shrub and emergent vegetation. Shrub species, such as cranbery (Vaccinium vitis-idaea), Labrador Tea (Rhododendron tomentosum), Bluebery (Vaccinium uliginosum), a nd small willows, provide limited structure in tundra ecosystems. Grasses and sedges are present, particularly on low centered polygonsscattered through the a rea. Soils consists of Histic Epipedons, with shallow organic layers underla in by dark mineral soils (which have dense roots intermixed in the horizons).

Throughout the Study Area, saturated wetlandscan be found on slight nises that border the lagoon or ponds, or are underlain by elevated ice wedges. Hydrology is the key characteristic for this wetland type, controlling the species present and relative ratios of shrubs and emergent plants.

Sea sonally flooded wetlands usually have more emergent species (e.g. grasses, sedges, herbaceous plants) due to the soil conditions. Shrubs grow only on local high reliefs, with low points having grasses and sedges growing in standing water. Shrubs include bluebery and willows growing up to a few feet high. The topographic differences driving the hydrologic regime can be traced back to the braided nature of the Wulik and Kivalina River, and the interactions of relic channels and sediment deposits.

4.2.2 Palustrine Fooded

Palustrine flooded wetlands were grouped based on a gradient between pemanently flooded and seasonally flooded/saturated Cowardin classific ations, including:

- PEM1F: Pa lustrine Persistent Emergent, Semi-permanently Flooded
- PEM1/SS1F: Pa lustrine Persistent Emergent/Broad-Leaved Deciduous Scrub Shrub, Semipermanently Flooded
- PSS1/EM1E: Pa lustrine Broad-Leaved Deciduous Scrub Shrub/ Persistent Emergent, Sea sonally Flooded/Saturated
- PSS1J : Pa lustrine Broad-Lea ved Dec iduous Scrub Shrub, Intemittently Flooded

Palustrine flooded wetlandsare dominated during the growing season by surface water and grass/sedge interspersion. Often tussockshave developed to elevate root zonesabove the water level. These can be important habitat for wild life, providing forage and nesting habitat for shorebirds. Shrubs are rarer in these areas, and typic ally are the results of periodic flooding, as can be seen in the PEE1/EM1E and PSS1J habitats.

The intermittently flooded scrub shrub (PSS1)) habitat playsa unique ecosystem role in the Study Area, as they generally conta in river sloughs that provide habitat for juvenile fishes. These wetlands border riverine areas, and are composed of low shrub as opposed to dwarf shrub species. These areas often have little emergent vegetation, and appearto be willow species of similar age classes. These habitats appearto be subject to spring sea sonal floods, which scour the emergent vegetation.

4.2.3 Soils Disc ussion

For both Palustrine Saturated \& Seasonally Flooded and Palustrine Flooded wetlands, soil profiles were the most diffic ult to evaluate for primary and secondary wetland characteristics. Munsell colors were not collected for any of the profiles; but descriptions on depth, organics, and texture were available. Soil profiles demonstrated a sha llow layer of organics, underla in by a saturated mixture of 'brown...loam' and organic mixture. We interpreted these to be histic epipedons.

While the definition of a histic epipedon is ' 8 - 16 inches of organics, underla in by dark mineral soil with chroma of 2 or less;' we included plots with only a few inches of organics. Our observation was that the cultural investigators often defined layers as ‘mineral with roots' where wetland biologists would call them 'organic' (extending the thic kness to 8 inches).

These wetlands determinations were also supported by the saturation observations. Due to the fact that shallow layers of saturation were described in October (well outside the J une - August window), we believe these wetlands are at least saturated throughout the growing season. The USACE Ala ska Supplement defines a hydric soil "as a soil that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop a naerobic conditions in the upperpart." It further states "a soil that meetsthe definition of a hydric soil is hydric whether or not it exhibits indic ators" spec ific ally described in the USACE Ala ska Supplement. Because of this, we believe these shallowerorganics meet the definition of a hydric soil.

4.2.4 Marine and Estuarine

There are many types of Waters of the United States in the Study Area; consisting of Marine, Estua ry, La c ustrine, Ponds, and Riverine habitat. Cowa rdin classific ations include:

- E1UB: Estuarine, Subtidal, Unconsolidated Bottom
- E2US: Estuarine, Intertidal, Unconsolidated Shore
- M1UB: Ma rine, Subtidal, Unc onsolidated Bottom
- M2US: Marine, Intertidal, Unconsolidated Shore

The Chukchi Sea provides the marine habitat west of Kivalina. The Chukchi Sea is listed as a traditional na vigable water of the United States by the USACE. Separating Kivalina and the mainland is the estuarian habitat of the Kivalina Lagoon. The lagoon, adjacent estuarine wetlands, and Chukchi Sea are frequently used by local residents to engage in subsistence activities a nd to tra vel to other villages.

4.2.5 Riverine

Moving inland, the dominate feature within the Study Area is the Wulik and Kivalina River. The Wulik provides an important subsistence transportation route inland for local residents. The Wulik drains the westem Brooks Range, and is a listed ADF\&G Anadromous Water for Chum Salmon, Coho Salmon, King Salmon, Pink Salmon, Sockeye Salmon, Dolly Varden, and Whitefish (ADFG 2017). Riverine Cowardin classific a tions include:

- R2UB: Riverine, Lower Perennial, Unconsolidated Bottom
- R2US: Riverine, Lower Perennial, Unconsolidated Shore
- R3UB: Riverine, Upper Perennial, Unconsolidated Bottom

4.2.6 Lacustrine and Ponds

As the Wulik and Kivalina Rivers have meandered throughout the landscape, they have formed many oxbow lakes and relic sloughs, which span the Study Area. These lac ustrine environments are sc attered throughout the Study Area, and provide important buffering of flood flows.

Lakes and ponds have also developed from the permafrost/ice wedge cycle. This cycle consists of water freezing and expanding cracks in the permafrost during the winter, and water filling in the cracks during the summer. If the ice wedges become exposed, they hold the summer heat, and cause ponds to form. These are present throughout the landscape in various stages of development, and provide important habitat heterogeneity.

Lacustrine and pond Cowardin classific ations include:
Cowardin classific ations include:

- LIUB: Lac ustrine, Limnetic, Unc onsolidated Bottom
- PUBH: Pa lustrine, Unc onsolidated Bottom, Pema nently Flooded

4.2.7 Uplands

There are a limited number of uplands (3\% of the a rea) scattered throughout the Study Area. KHill is the most visually signific ant to the project, as the adjacent area is the destination for the road. This large cropping dominatesthe eastem end of the Study Area.

O utside of K-Hill, uplands are isolated, topographic rises above the surrounding wetlands with dryer soil regimes, often bordering lake or riverine systems. These uplandscould be the result of relic depositions from the Wulik or Kivalina River, or geologic formations.

Other isolated uplands are scattered throughout the Study Area; including small pingos, which have risen above the surrounding wetlands, elevating the plant communities above the water table. Vegetation differencesamong uplands/compared to wetlands included larger shrub species, and visible outcroppings or ridgelines. Confimation of pingos was greatly improved through the LiDAR data sets now available.

4.3 WIDLE (VIERECK) HABIAT

Wild life habitat within the Study Area, a s defined by Viereck (1992), is summarized below. In addition, the USFWS found that II.C.1 (Closed Low Scrub) habitat is likely to hold importa nt bird habitat.

Table 3: Summary of wildlife habitat

Habitat Type	Acres	\% Study area				
Developed	64.8	0.2%				
II.C.1 (Closed Low Scrub)	$3,228.7$	8.7%				
II.D.2 (Willow Dwarf Shrub)	$9,057.3$	24.5%				
III.A.2 (Mesic Graminoid Herbaceous)	$14,348.7$	38.9%				
III.A.3 (Wet Graminoid Herbaceous)	$1,877.6$	5.1%				
W (Water)	$8,339.3$	22.6%				
Total Study area					$\mathbf{3 6 , 9 1 6 . 4}$	$\mathbf{1 0 0 . 0 \%}$

4.3.1 II.C. 1 (Closed Low Scrub)

Closed Low Scrub is the classific ation for all important bird shrub habitat (Figure 3 and 4. Appendix A). These shrubs are 20 cm (centimeter) to 1.5 m (meter) tall, a nd are often found bordering waterways. They are the highest canopy vegetation available in the Study Area, and provide some of the only perching locations for birds in the area. These provide nesting habitat, elevated above predators, and locations for surveillance. Moming and evening song behavior from perching locations helps to establish teritories, a nd attract mates. This ha bitat is less common in the Study Area, a nd was promoted from previous reports/assessments by one functional value (e.g. II to I orI to I+) to account for its local importance.

4.3.2 II.D. 2 (Willow Dwarf Shrub)

Willow Dwarf Shrub is shrub dominated habitat (>25\% shrub cover), with heights below 20 cm . Willows are the dominant species evident in the field data, although other species such and bluebery are present. The areastend to have slightly dryer hydrologic regimescompared to emergent habitat allowing the growth of additional species. They can provide important ground nesting bird habitat, along with bery species to support omnivores.

4.3.3 III.A. 2 (Mesic Graminoid Herbaceous)

Mesic Graminoid Herbaceous habitat has up to 25% shrub cover, and are moist sites, usually with sea sonal flooding but without standing water. Tussocks are present, along with high centered polygons. This mic rotopographic relief can be used for nesting by shorebirds, and supports important sedges and grasses for herbivores. This habitat is common both in the Study Area and in the region as a whole.

4.3.4 III.A. 3 (Wet Graminoid Herbaceous)

Wet Graminoid Herbaceous habitat has standing water present for most of the year, with up to 25% shrub cover. It tends to be dominated by obligate sedges and grasses. The sedges and grasses can provide important forage habitat for herbivores, and shorebirds often feed on invertebrates present in the standing water.

4.3.5 W (Water)

Viereck summa rizes all ponds, lakes, rivers, estua ries, and ocean ha bitat as Water. This ha bitat comprises about 22\% of the Study Area. Water habitats are important fish and wild life habitat. In particular, deep pools provide overwintering locations for resident fish species.

4.4 FUNCTIONALASSESSMENT

This report's func tional a ssessment mirrored the methodology presented in ASRC (2015) to mainta in a consistent approach. Similar to the last assessment, wetlandswere found to be high ranking (Figure 5, Table 4). Waters of the United States (ponds, riverine, tidal, estua rine, and lacustrine) were promoted to Category I+to indicate their intrinsic importance. Saturated wetlands (PSS1/EM1B) were ranked as Category II.

Important bird habitat wasfound to consist of Closed Low Scrub habitat (II.C .I). Upon consultation with the USFWS, all Closed Low Scrub (II.C.I) was promoted one functional level (e.g. II to I or I to I+).

Table 4: Final Functional Assessment Acreage

Habitat Type	Acres	USFWS Bird Shrub Habitat? (II.C.I)	Functional Value/ Category
Wetlands			
PEM1/SS1B	296.2	No	II
PEM1/SS1C	71.1	Yes	I+
	13488.7	No	1
PEM1/SS1F	581.0	No	1
PEM1C	17.1	Yes	I+
	563.8	No	I
PEM1F	1296.6	No	I
PSS1/EM1B	150.3	Yes	I
	5873.5	No	II
PSS1/EM1C	857.7	Yes	I+
	1184.3	No	I
PSS1/EM1E	587.4	Yes	I+
	843.2	No	1
PSS1C	1301.7	Yes	I+
	89.6	No	I
PSS1J	172.0	Yes	I+
	59.9	No	I
Total Wetlands	27434.1	-	-
Waters of the U.S.			
E1UB	3686.9	No	I+
E2US	135.1	No	I+
L1UB	1164.3	No	I+
M1UB	109.1	No	I+
M2US	73.7	No	I+
PUBH	949.5	No	I+
R2UB	1378.4	No	I+
R2US	737.8	No	I+
R3UB	176.0	No	I+
Total Waters	8410.8		
Uplands			
Upland	1071.5	-	-
Total Study Area	36916.4	-	-

4.4.1 Category I+

Category I+ polygons were reserved for ponds, rivers, lakes, oceans, estua ries, a nd elevated bird habitat (discussed below). These landscape features have a higher intrinsic value than neighboring wetlands due to their roles in the environment. To aid in project planning, it was determined to be important to raise these features above Category I.

4.4.2 Category I

67% of wetlands (which are not Waters of the US) in the Study Area are Category I. This is due to the low level of disturbance in the ecosystem. Wetlands are relatively pristine, and fully functioning within their natural environment. Few wetlands are providing unique functions or services, and instead work as a large interrelated network extending farbeyond the Study Area boundaries.

4.4.3 Category II

Category II habitats comprised the smallest functional category. These were saturated shrub habitat, which provide relatively low levels of flood flow alteration and sediment removal. Saturated wetlandsare the least wet, and it is common for them to be the lowest ranked due to their similarities with uplands. These often are on small ridges or pingos, bordering upla nds and wetter wetlands.

4.4.4 Bird Habitat

The USFWShas indicated that Low Scrub Habitat (II.C.I) provides important bird habitat in the Study Area. The functional assessment promoted all Low Scrub Habitat one functional level (e.g. II to I, orl to I+) to incomorate these comments. These habitats tended to be nearniverine systems.

Due to the slight differences in Viereck and Cowardin Classific ation systems, bird habitat (II.C.1) is found in a variety of wetland classifications (PEM1/SS1C, PEM1C, PSS1/EM 1B, PSS1/EM1C, PSS1/EM1E, PSS1C, PSS1J).

This is partic ularly important to note, because not all Low Scrub Habitat is ranked asCategory It. The important bird habitat waselevated one level, which depending on the Cowardin classific ation elevated polygons from II to I or I to I+(Table 4).

4.5 CONCLUSION AND J URISDIC TION

Development activities from construction of the proposed project would likely impact wetla nds and/or Waters of the U.S. under the jurisdiction of USACE. Ba sed on the review of existing hydrology information, draina ge within the Study Area flows into the Kivalina River, Wulik River, or directly into the Chukchi Sea, a traditional navigable Water of the U.S. The Kivalina River and Wulik River also flows into the Kivalina Lagoon, a tidal estuary of the Chukchi Sea.

Wetlands in the Study Area have a cleardirect surface connection to the Kivalina River, Wulik River, Kivalina Lagoon, or Chukchi Sea. For this reason, wetlands and Waters of the U.S. in the Study Area are presumed jurisdictional by the USACE under Section 404 of the CWA and Section III.D. 2 of the J unisdic tional Determination Form.

5.0 REFERENCES

ADFG. 2017. Anadromous Waters Catalog.
https://www.adfg.alaska.gov/sf/SARR/AWC/index.cfm?ADFG =ma in.home
ASRC. 2015. Wetland Delineation and Functions \& Values Assessment. Prepared for Northwest Arctic Borough, Office 163 La goon Street, Kotzebue, AK 99752

Coward in, L.M., V. Carter, F.C. Golet, and E.T. La Roe. 1979. Classific ation of Wetla nds and Deep water Ha bitats of the United States. United States Department of the Interior. US Fish and Wild life Service. Office of Biologic al Servic es. Wa shington D.C. 20240

Golder Associates. 2015. Kivalina Evacuation Road Geotechnical Report, Kiva lina, Ala ska. Submitted to: Northwest Arctic Borough c/o Chase Nelson, DOWL, 164 Lagoon Street, Kotzebue, AK 99752

Munsell Color (Firm). (2010). Munsell soil color charts: with genuine Munsell color chips. Grand Rapids, MI: Munsell Color,

Stantec. 2017. Kivalina Eva cuation and School Site Access Road. Cultural Resources Assessment Report. Prepared for Remote Solutions, UC

Stantec. 2016. Kivalina Evacuation and School Site Access Road. September 2016 Stantec site reconna issance. Unpublished Data.

United States Army Coms of Engineers. 2017. Kivalina Evacuation Route Wetla nd Delineation. Prepared by Jeremy Grauf.

United States Army Corps of Engineers. 2007. Regional Supplement to the Cops of Engineers Wetland Delineation Manual: Alaska Region (Version 2.0). United States Army Engineer Research and Development Center, Vicksburg MS.

United States Army Corps of Engineers. 1987. Cops of Eng ineers Wetla nds Delineation Manual. Environmental Laboratory, Waterways Experiment Station, Vicksburg MS.

Viereck, L.A., C.T. Dymess, A.R. Batten, and K.J. Wenzlick. 1992. The Alaska Vegetation Classification. United States Department of Agric ulture, Forest Service.

WHPacific. 2012a. Kivalina Evacuation Road Project, Preliminary Environmental Report. Prepared for Maniilaq Association on behalf of Native Village of Kivalina.

WHPacific. 2012b. Native Village of Kivalina - Evacuation Route Signific ant Biotic Resources Baseline Report and Preliminary Essential Fish Habitat Analysis. Prepared for Maniilaq Association on behalf of Native Village of Kivalina.

WHPacific. 2014. Evacuation and School Access Road Project, Kivalina, Alaska. Route Reconnaissance Study. Prepared for Native Village of Kivalina.

Appendix A SITEMAPS

Appendix H Page 70

Appendix H Page 95

Appendix H Page 104

Appendix B STANDARD WEILAND DELINEATION DATA SHEEIS

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Remarks Larger willows along northeast side of large lake at base of K-hill west. Drainage apparant along paths between willows. This point combines the soil information (from an Oct 2016 cultural investigation) with the site photos of vegetation during a Sept 2016 site visit, conducted by Stantec. We have determined that there was enough information from these investigations to inform the status of the site.

VEGETATION - Use scientific names of plants. List all species in the plot. MUST LIST COVER IN DESECENDING ORDER

Remarks Oct 2016 Stantec Cultural Point DME-16-008 was used for soils. While Munsell colors were not identified, we interpreted 0-6 inches as being organics, $6-26$ inches as being a layer of organic/mineral soil mix meeting the definition of a Histic Epipedon ('brown' being chroma 2 or less, 'dense...roots' as organics). Saturation was noted at below 5 inches. As the site was sampled in October, we expect the organics to be saturated during June - August.

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Remarks Old channel and gravel bars with standing water adjacent to south. This point combines the soil information from an Oct 2016 cultural investigation with the site photos of vegetation during a Sept 2016 site visit, both conducted by Stantec. While wetlands data was not taken specifically, at this location we have determined that there was enough information from these investigations to inform the status of the site.

VEGETATION - Use scientific names of plants. List all species in the plot. MUST LIST COVER IN DESECENDING ORDER

Remarks Soils information is taken from a Oct 2016 cultural resources investigation. 25-50\% saturation was noted at 5-11". While Munsell colors were not identified, we interpreted a 2 " layer of moss, at 2-4" a layer of saturated organics (primarily due to the 'dense roots') meeting the definition of a Histic Epipedon, and at 4-10" a layer of mineral soil meeting the definition of a Histic Epipedon ('gray' being chroma 2 or less). This interpretation has been boosted by the site photographs and our regional experience.

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?		Is the Sampled Area within a Wetland?	es X No	10
Remarks Edge of geomorphic change. Up raised on south side to less vegetated plateau, shrubs diminishing to the south grading to tussock/grassy. Point combines soil information from an Oct 2016 cultural investigation (point JAJ-16-009) with site photos of vegetation during a Sept 2016 site visit (P12), both conducted by Stantec. While wetlands data was not taken specifically, at this location we have determined that there was enough information from these investigations to inform the status of the site.				

VEGETATION - Use scientific names of plants. List all species in the plot. MUST LIST COVER IN DESECENDING ORDER

Remarks Soils information is taken from a Oct 2016 cultural resources investigation. 50-75\% saturation was noted at 2 to 16 inches in Oct. While Munsell colors were not identified, we interpreted there to be a 2 inch layer of organics, which is probably saturated during the growing season. At 5-40 inches a mixture of organics (due to the 'dense roots') and mineral loam. We assume this meets the definition of a Histic Epipedon, ('brown' being chroma 2 or less). This interpretation has been boosted by the site photographs.

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Remarks Edge of second side channel to east. Standing ponds chain. Flat elevated tundra between two side channels. Point combines soil information (from an Oct 2016 cultural investigation and a March/April 2015 Golder geotechnical investigation) with site photos of vegetation during a Sept 2016 site visit, conducted by Stantec. While wetlands data was not taken specifically, at this location we have determined that there was enough information from these investigations to inform the status of the site.

VEGETATION - Use scientific names of plants. List all species in the plot. MUST LIST COVER IN DESECENDING ORDER

Remarks Oct 2016 Stantec Cultural Point DME-16-023 and a March/April 2015 Golder geotechnical investigation was used for soils (point K15-13). While Munsell colors were not identified, we interpreted 0-4 inches as being organics, 4-25 inches as being a layer of mineral soil meeting the definition of a Histic Epipedon ('brown' being chroma 2 or less). Saturation was noted at 4 inches and below. As the site was sampled in October, we expect the organics to be saturated during June - August

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Remarks This point combines the soil information (from an Oct 2016 cultural investigation) with the site photos of vegetation during a Sept 2016 site visit, conducted by Stantec. We have determined that there was enough information from these investigations to inform the status of the site. Our hypothesis is that these riverine wetlands experience regular flooding during spring highwater. This would provide the wetland hydrology, and the scouring force to prevent a dense herb layer.

VEGETATION - Use scientific names of plants. List all species in the plot. MUST LIST COVER IN DESECENDING ORDER

Remarks Oct 2016 Stantec Cultural Point JAJ-16-013 was used for soils. While Munsell colors were not identified, we interpreted 0-2 inches as being organics, 2-16 inches as being a layer of organic/mineral soil mix meeting the definition of a Histic Epipedon ('brown' being chroma 2 or less).We interpreted 'dense...roots' as being evidence of organics. Saturation was noted at below 2 inches. As the site was sampled in October, we expect the organics to be saturated during June - August.

Remarks: Oct 2016 Stantec Cultural Point DME-16-013 found 25-50\% water saturation at 2". No note of a water table, this information is not typically recorded in a cultural investigation. In our experience in the region, saturation of this degree probably means the water table is near the 8" mark during June-Aug. It is also important to review the secondary characteristics of this site. We find that this site likely experiences seasonal flooding during spring highwater (note lack of dense herb layer, indicating scouring).

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION - Use scientific names of plants. List all species in the plot. MUST LIST COVER IN DESECENDING ORDER

Remarks Oct 2016 Stantec Cultural Point JAJ-16-466. While Munsell colors were not identified, we interpreted 0-2" as moss/organics, 2-3" as organic/mineral soil mix meeting the definition of a Histic Epipedon ('brown' being interpreted as chroma 2 or less). We interpreted 'dense...roots' as being evidence of organics. $3-10$ " as clay without organics. $50-75 \%$ saturation was noted at 2 ". As the site was sampled in Oct. we expect saturated organics during June-Aug.
 perch water to within 12 inches.

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION - Use scientific names of plants. List all species in the plot. MUST LIST COVER IN DESECENDING ORDER

Remarks Oct 2016 Stantec Cultural Point JAJ-16-020 was used for soils. While Munsell colors were not identified, we interpreted 0-2" as organics, $2-12$ " as a layer of mineral with organics intermixed ('brown' being chroma 2 or less).We interpreted 'few...roots' as organics evidence. Saturation was noted below 2". As the site was sampled in Oct., organics will be saturated during June - August While the organic is slightly less than typical of a wetland, we interpret this as histic epipedon.

HYDROLOGY Wetland Hydrology Indicators: Primary Indicators (any one indicator is sufficient)
Surface Water (A1)
High Water Table (A2)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Remarks Standing water at surface in current location. Sporadic shrubs, seeding grasses/sedges. This point combines the soil information (from an Oct 2016 cultural investigation and a March/April 2015 Golder geotechnical investigation) with the site photos of vegetation during a Sept 2016 site visit, conducted by Stantec. We have determined that there was enough information from these investigations to inform the status of the site.

VEGETATION - Use scientific names of plants. List all species in the plot. MUST LIST COVER IN DESECENDING ORDER

$\begin{array}{ll}\text { Remarks } & \text { Oct } 2016 \text { Stantec Cultural Point JAJ-16-30 and March/April } 2015 \text { Golder geotechnical investigation was used for soils (point K15- } \\ & \text { 21). While Munsell colors were not identified, we interpreted 0-2" as organics, 2-12" as a layer of organic/mineral soil mix meeting }\end{array}$
$\begin{array}{ll}\text { Remarks } & \text { Oct } 2016 \text { Stantec Cultural Point JAJ-16-30 and March/April } 2015 \text { Golder geotechnical investigation was used for soils (point K15- } \\ & \text { 21). While Munsell colors were not identified, we interpreted 0-2" as organics, } 2-12 \text { " as a layer of organic/mineral soil mix meeting }\end{array}$ the definition of a Histic Epipedon ('brown' being chroma 2 or less, 'dense...roots' as being organics). Saturation was noted at below 2 inches. As the site was sampled in October, we expect the organics to be saturated during June - August.

HYDROLOGY

Wetland Hydrology Indicators:

Primary Indicators (any one indicator is sufficient)

Surface Water (A1)

 High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Surface Soil Cracks (B6)Secondary Indicators (2 or more required)

	Water-stained Leaves (B9)
	Drainage Patterns (B10)
	Oxidized Rhizospheres along Living Roots (C3)
	Presence of Reduced Iron (C4)
	Salt Deposits (C5)
	Stunted or Stressed Plants (D1)
	Geomorphic Position (D2)
	Shallow Aquitard (D3)
X	Microtopographic Relief (D4)
	FAC-Neutral Test (D5)

Inundation Visible on Aerial Imagery (B7)
___Sparsely Vegetated Concave Surface (B8)
Marl Deposits (B15)
-Hydrogen Sulfide Odor (C1)
__D Dry-Season Water Table (C2)
——Other (Explain in Remarks)
_Alaska Gleyed Without Hue 5Y or Redder Underlying Layer Other (Explain in Remarks)
${ }^{3}$ One indicator of hydrophytic vegetation, one primary indicator of wetland hydrology, and an appropriate landscape position must be present unless disturbed ${ }^{4}$ Give details of color change in Remarks.

Restrictive Layer (if present)

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION - Use scientific names of plants. List all species in the plot. MUST LIST COVER IN DESECENDING ORDER

Remarks Golder found peat/organics from 0-18". Oct 2016 Stantec Cultural Point JAJ-16-006 and March/April 2015 Golder geotechnical investigation was used for soils (point K-15-15). While Munsell colors were not identified, we interpreted 0-2" as organics, 2-21" as organics (roots) and a layer of mineral soil meeting the definition of a Histic Epipedon ('brown' being chroma 2 or less). Saturation was noted at below 2 ".

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

VEGETATION - Use scientific names of plants. List all species in the plot. MUST LIST COVER IN DESECENDING ORDER

SUMMARY OF FINDINGS - Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?		Is the Sampled Area within a Wetland?	S X No	-
Remarks Slight rise near shoreline. Location where north/central proposed route would cross lagoon. Small section is slightly drier than surrounding, but is still a wetland. This point combines the soil information (from an Oct 2016 cultural investigation) with the site photos of vegetation during a Sept 2016 site visit, conducted by Stantec. We have determined that there was enough information from these investigations to inform the status of the site.				

VEGETATION - Use scientific names of plants. List all species in the plot. MUST LIST COVER IN DESECENDING ORDER

Appendix C PHOTO POINIS

Project/Site:	te: Kivalina	Site No.: HP11
Applicant/Ow	Owner: DOT\&PF	Stantec
Date: $\quad 9$	9/14/2017	Cowardin: PSS1/EM1E
Notes:	Wulik River braids. Shrub habitat is evident, along with emergent wetlands in the distance. The shrubs around the river braids appear to be seasonally flooded, as evident from the gravel desposits.	

Project/Site:	Kivalina	Site No.:	HP15	
Applicant/Owner:	DOT\&PF	Investigator(s):		Stantec
Date: 9/15/2017		Cowardin:	L1UB	

Notes:	Helicopter overview looking west. Shrub habitat is evident near the shoreline, along with emergent wetland habitat and ponds in the distance.

Project/Site: Applicant/Owner: Kivalina DOT\&PF			Site No.:	HP37
			Investigator(s)	Sta
Applicant/Owner: Date: $\quad 9 / 15 / 2017$			Cowardin:	PEM1/SS1C
Notes	Photo taken during Stantec Site visit (HP37). Scrub Shrub wetland evident, with evidence of prime bird habitat. Lakes and ponds are present in the distance.			

Project/Site: \qquad Applicant/Owner: Date: 9/15/2017		Kivalina	Site No.:	HP38
		DOT\&PF	Investigator(s):	
			Cowardin:	PEM1
Notes:	Aerial Photo taken during Stantec Site Visit (HP38). Flat emergent wetland evident, with some shrubs present.			

Project/Site:	Kivalina	Site No.:	P24
Applicant/Owner:	DOT\&PF	Investigator(s):	Stantec
Date: $\quad 9 / 16 / 2016$		Cowardin:	PSS1/EM1B

Notes:	$\begin{array}{l}\text { Slope break from sloping area at base of K-Hill to more flat ground extending westward. Transition to more } \\ \text { grass/sedge. Smaller tussocks. Walking west, standing water occurs between tussocks. Undulating } \\ \text { between low and elevated spots with more shrub or elevated }-0.5-1 \text { ft. Undulating bands run North-South } \\ \text { for the most part. Not particular drainage paths distinctly. Frozen/frost conditions. }\end{array}$

North

South

East

West

Project/Site: Kivalina Site No.: P36 Applicant/Owner: DOT\&PF Investigator(s): Stantec			
Applicant/Owner: \qquad Date: $\quad 9 / 16 / 2017$		Cowardin:	PEM1/SS1C
Notes: $\begin{array}{l}\text { Photo taken during Stantec Site visit. Pockets of standing water wetlands throughout } \\ \text { this area. Standing water in current location. }\end{array}$			
South		West	

Project/Site:	Kivalina	Site No.: _ USACE 1	
Applicant/Owner: DOT\&PF		Investigator(s): Cowardin:	Jeremy Grau
Date: 8	8/15/2017		Wetland
Notes:	Wetland. There was a visi 1 figure 1 of 10), and the gravel and coble layer below.	wetlands to upl shallow (6 inch) 88152 (WGS 1984	ands (see enclosure organic layer with 4)

	Project/Site: Kivalina	Site No.: USACE 2
	Applicant/Owner: \quad DOT\&PF	Investigator(s): J_Jeremy Grauf
	Date: \quad 8/15/2017	Cowardin: Upland
	Notes: Upland. -164.387573, 67.808517 (WGS 1984)	

Pros		Kivalina	Site No.: WCP1	
Applicant/Owner: DOT\&PF			Investigator(s): Cowardin:	Stantec, Ross Smith
Date:	8/17/2017			Wetland
Notes:	$\begin{aligned} & \text { WCP1 } \\ & \text { silt (A/B } \\ & \text { cmbs; } \\ & 67.810 \end{aligned}$	and Control rizons); 20-35 be showed no 64.409389	ated active orga silt. Terminated before encoun	ic mat \& o hovel prob ering rock

